
ALOHA Load-Balancer - Application Note

Routing HTTP requests

Document version: v1.1

Last update: 19th June 2014

EMEA Headquarters
3, rue du petit robinson
ZAC des Metz
78350 Jouy-en-Josas
France
http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Purpose
Content switching is the ability to route HTTP requests based on any information available in the HTTP protocol
(URL and headers).
This document explains how to do it in HAProxy.

Complexity

Versions concerned
– Aloha 4.2 and above

Changelog
Version Description

1.1

2014-06-19

– HAProxy Tech. theme update
– minor changes
– Updates for ALOHA 6.0

1.0 2013-11-08
Initial release

Synopsis
Content Switching helps improving application scalability and makes web architectures more flexible.
It can be used as well to improve security and reliability of web platforms or when some applications require different
settings despite being hosted on the same server.
These settings could be:

– virtual hosting: routing requests based on website host name
– application hosting: routing requests based on url path
– categorizing HTTP traffic, like static and dynamic
– resource allocation based on user category (authenticated or not)
– health check
– timeouts
– connection mode
– statistics
– compression
– queue management

Non exhaustive list.

Page 2 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Limitation
Content switching rules are partialy compatible with HAProxy’s tunnel mode. Please read the memo named "HTTP
connection mode" to know more about HAProxy’s modes.
In tunnel mode, only the first request of the session can be routed, upcoming data of the connection is forwarded as
payload in the tunnel established by HAProxy between the client and the server.

If your application requires authentication based on NTLM, then you must use the tunnel mode (or
http-keep-alive mode in ALOHA 6.0 and above)

ALOHA 4.2 to 5.5
By default, the ALOHA is configured in the server-close mode, which is compatible with the information provided in
this document.
If you need to enable tunnel mode on this ALOHA version, then you’ll be able to route the whole traffic based on the
first request of each connection. This can be sufficient in most cases.

ALOHA 6.0 and above
Since the ALOHA 6.0, a new connection mode has been introduced: http-keep-alive. This mode is compatible with
NTLM since it keeps the connection opened on the server side, but it is also able to analyse the whole content exchanged
on this connection. It means it is able to route any request from an established connection to an other server when
required.
The tunnel mode is still available, called http-tunnel, and could be used in very rare cases.

Reverse Proxy
Usually, the Content Switching ability is associated to Reverse-Proxies.
HAProxy’s way of working is typically a Reverse proxy. In your configuration, you define entry points, called frontend,
and outgoing points, called backend. The way to choose which backend to route an HTTP request is content switching.

Page 3 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Content Switching in the ALOHA Load-Balancer
HAProxy’s internal routing process
In the ALOHA, the software responsible to processing HTTP is HAProxy. So this is in HAProxy that we’ll be able to
configure content switching rules.
From an HTTP point of view, HAProxy is split into two main components:

1. frontend: manages everything related to the client side
2. backend: manages everything related to the server side

Basically, when a client sends a request, it is first processed by the frontend. Then, based on its rules, it routes the
request to a backend.

The step when HAProxy takes routing decision between the frontend and the backend is the "content
switching" step.

Routing decision can be taken on the following items:

– any string or regexp matching in HTTP headers
– any string or regexp matching in the URL (including scheme and protocol version)
– any value of a query string parameter
– any file extension
– cookie values
– ssl protocol
– HAProxy’s internal status (farm capacity, etc...)

Non-exhaustive list.

Content switching rule profile
In HAProxy, Content switching rules are split in 2 components:

1. an acl to fetch samples from current traffic and to match it against patterns
2. a routing decision which points to a backend if the associated acl(s) are true

Below is the prototype of a rule:

acl <acl name> <fetch> <patterns>
use_backend <backend name> if / unless <acl name>

– acl: HAProxy keyword pointing the beginning of a new matching rule
– <acl name>: a word (underscore ’_’ and hyphen ’-’ allowed) naming the acl which will be used as a label (or
pointer) later in the configuration

– <fetch>: sample to be extracted
– <patterns>: values to be compared to the sample fetched
– use_backend: HAProxy keyword indicating that a routing decision may occur if the acl matches
– <backend name>: the name of the backend to route to
– if / unless: keyword to tell whether to match (or not) an acl
– <acl name>: the name of the acl to get the matching result from

Rules about HAProxy’s content switching
When working with acl and use_backed in HAProxy, it is important to keep in mind the following rules:

– Many patterns can be provided on a single acl line, a logical OR is applied between them
– Many acls can have the same name: a logical OR is applied between them
– An acl returns only TRUE or FALSE when the <sample fetched> matches any <pattern>
– When a frontend configuration owns many use_backend, the first one matching an acl will be used
– A use_backend can be triggered by many acls. In such case, just append acl names. A logical AND is implicitly
applied. An explicit OR is also available.

Page 4 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Fetch samples
There are many fetch methods available in HAProxy, and each new ALOHA release comes with new ones.
To know which fetches are available in your ALOHA, open the WUI, go in the LB Layer7 tab, click on the help button
on the top right corner of the textarea and use the search engine and look for the string "Matching at Layer 7" or
"Fetching HTTP samples" (ALOHA 6.0 and above).

ALOHA 4.2 to 5.5
The most common fetches are:

– src: fetch source IP address
– nbsrv: number of available servers in a farm
– method: request HTTP method
– hdr: fetch a header value
– path: fetch a url path (query string excluded)

– url: fetch the request’s URL as presented in
the request, including the method (GET/POST/-
HEAD/etc...) and the protocol version

– urlp: fetch the first occurrence of a URL parameter
in a query string

ALOHA 6.0
This firmware release introduced the new following sample fetch:

– base: fetch the concatenation of the first Host header and the path of the url (until the question mark)
– cook: fetch a cookie value

(Non exhaustive list)

Enhanced fetches
By default, any fetch method applies to the whole targetted object. Sometimes, we just want to fetch samples at
different locations or through different ways in the object.
You can suffix the fetch method by the one of the keyword below to change the location:

– _beg: prefix
– _cnt: number of occurrence
– _dir: directory (slashes are implicit, no need to de-
clare them)

– _dom: domain name

– _end: suffix
– _len: length
– _reg: PCRE regex
– _sub: substring

fetch examples
– hdr_sub: fetch a substring in a header
– hdr_reg: fetch a regular expression in a header
– path_beg: fetch the beginning of the url path

– path_end: fetch file extension (basically, the end of
the url)

– path_dir: fetch a directory in the path

Sample / pattern types
There are many ways to match pattern against a fetched sample, depending on the type of the sample.

Integers
When a <fetch> returns an integer, we may want to know if the number returned is lower, greater or equal than a
pattern.
The keyword below allows these comparisons:

– eq: true if the sample fetched is equal to the pattern
– ge: true if the sample fetched is greater OR equal than the pattern
– gt: true if the sample fetched is greater than the pattern

Page 5 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

– le: true if the sample fetched is lower OR equal than the pattern
– lt: true if the sample fetched is lower than the pattern

In example: test if the number of available servers in the backend bk_web is lower than 2:
acl low_capacity nbsrv(bk_web) lt 2

The acl above returns true when the number of available servers in a farm is LOWER than 2 (thus 1 or 0).
It can be used to route traffic to a sorry backend if you know your application requires at least 2 servers to handle the
load properly.

Strings
When a <fetch> returns a string, we may want to compare with other strings.

– A raw case-sensitive comparison is performed
– It is possible to make the search case-insensitive by adding the flag "-i" before the patterns
– If a pattern contains a space character, then it must be escaped by a backslash (’\’)

In example: check if the Host header is ’www.domain.tld’:
acl host_www.domain.tld hdr(Host) www.domain.tld

Regular expressions
Regular expressions can be used to match any type of content.

if you want to match a simple string or an integer, it is better to use the appropriate enhanced fetch.

The comparison is case-sensitive by default. It can be turned case-insensitive by adding the flag "-i" before the regexp.
If a regexp contains a space character, then it must be escaped by a backslash (’\’).

In example: check if the Host header looks like ’*.domain.tld’:
acl host_domain.tld hdr_reg(Host) .*domain\.tld$

IPv4 and IPv6 addresses

ALOHA 5.0 and below can only do IPv4 matching.
ALOHA 5.5 and above can match both IPv4 and IPv6.

IPs addresses can be provided either as a single host address or as a subnet in CIDR notation. The result is positive if
the sample matches or if it belongs to the subnet (patterns).
In example: check if the client IP belong to the users subnet:
acl users_subnet src 10.0.0.0/24

The acl returns true if the client IP belongs to the supplied subnet.

Page 6 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Content switching examples
Static and dynamic traffic split
When an application is hosted over a single host name, one way to split requests for static and dynamic content is to
use either URL path or file extension.

Diagram
The diagram below illustrates this case. The ALOHA gets all traffic and splits it against 2 farms.

Note that a single server could be used to deliver both static and dynamic content.
Splitting the traffic that way allows to manage each farm individually with different type of queueing and health checks.

Page 7 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Configuration
Frontend
Whole website traffic reaches this frontend. HAProxy takes rooting decision based on layer 7 information.
frontend ft_websites

mode http
bind 0.0.0.0:80
log global
option httplog

detect static content by file extension or URL path
acl static path_end .gif .jpg .jpeg .png
acl static path_end css js
acl static path_beg /images/ /users/
acl static path_dir static
use_backend bk_static if static

default route
default_backend bk_dynamic

Backend

static farm configuration
backend bk_static

mode http
balance roundrobin
option forwardfor
dedicated health check for static content
option httpchk HEAD /images/pixel.png
default-server inter 3s rise 2 fall 3 slowstart 0
server srv1 192.168.10.11:80 weight 10 maxconn 1000 check
server srv2 192.168.10.12:80 weight 10 maxconn 1000 check

dynamic farm configuration
backend bk_dynamic

mode http
balance roundrobin
cookie SERVERID2 insert indirect nocache
option forwardfor
dedicated health check for dynamic content
option httpchk GET /check.php
http-check expect string OK
default-server inter 3s rise 2 fall 3 slowstart 0
server srv1 192.168.10.11:8080 cookie s1 weight 10 maxconn 100 check
server srv2 192.168.10.12:8080 cookie s2 weight 10 maxconn 100 check

Page 8 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Virtual Hosting
It is very common to use Virtual Hosting based on website host name when we own a very few public IP addresses and
need to give a access to a very large number of applications.
Basically, the ALOHA load-balancer is used as a reverse proxy in such case.

Diagram
In the example below, there are 2 domains pointing to the ALOHA public IP address. Depending on the domain name,
the ALOHA Load-Balancer decides which farm to use.

Configuration
Frontend
Whole website traffic reaches this frontend. HAProxy takes rooting decision based on layer 7 information.

frontend ft_websites
mode http
bind 0.0.0.0:80
log global
option httplog

Capturing Host header in logs is important for
troubleshooting to know whether rules matches or not

capture request header host len 64

site1 routing rules based on Host header
acl site1 hdr_end(host) site1.com site1.eu
use_backend bk_site1 if site1

site2 routing rules based on Host header
acl site2 hdr_reg(host) site2\.(com|ie)$
use_backend bk_site2 if site2

default route
default_backend bk_default

Page 9 of 10 Public document

http://www.haproxy.com/

HAProxy Tech. - ALOHA Load-Balancer Routing HTTP requests

Backend
Each virtual host has its own backend with its specific configuration (mind the health check).

site1 backend configuration
backend bk_site1

mode http
balance roundrobin
cookie SERVERID1 insert indirect nocache
option forwardfor
dedicated health check for site1
option httpchk HEAD /check.php HTTP/1.1\r\nHost:\ www.site1.com
default-server inter 3s rise 2 fall 3 slowstart 0
server srv1 192.168.10.11:80 cookie s1 weight 10 maxconn 1000 check
server srv2 192.168.10.12:80 cookie s2 weight 10 maxconn 1000 check

site2 backend configuration
backend bk_site2

mode http
balance roundrobin
cookie SERVERID2 insert indirect nocache
option forwardfor
dedicated health check for site2
option httpchk HEAD /check.jsp HTTP/1.1\r\nHost:\ www.site2.com
default-server inter 3s rise 2 fall 3 slowstart 0
server srv1 192.168.10.13:80 cookie s1 weight 10 maxconn 1000 check
server srv2 192.168.10.14:80 cookie s2 weight 10 maxconn 1000 check

All requests which did not match the content switching rules are routed to this backend:
backend bk_default

mode http
balance roundrobin
option forwardfor
option httpchk HEAD /
default-server inter 3s rise 2 fall 3 slowstart 0
server srv1 192.168.10.8:80 weight 10 maxconn 1000 check
server srv2 192.168.10.9:80 weight 10 maxconn 1000 check

Page 10 of 10 Public document

http://www.haproxy.com/

	Purpose
	Complexity
	Versions concerned
	Changelog
	Synopsis
	Limitation
	ALOHA 4.2 to 5.5
	ALOHA 6.0 and above

	Reverse Proxy
	Content Switching in the ALOHA Load-Balancer
	HAProxy's internal routing process
	Content switching rule profile
	Rules about HAProxy's content switching
	Fetch samples
	ALOHA 4.2 to 5.5
	ALOHA 6.0

	Enhanced fetches
	fetch examples
	Sample / pattern types
	Integers
	Strings
	Regular expressions
	IPv4 and IPv6 addresses

	Content switching examples
	Static and dynamic traffic split
	Diagram
	Configuration

	Virtual Hosting
	Diagram
	Configuration

