
HAProxy as an
API Gateway
Consolidate Your APIs Behind the
World's Fastest Software Load Balancer

https://www.haproxy.com/

HAProxy as an API
Gateway
Consolidate Your APIs Behind the World's
Fastest Software Load Balancer

© 2021 HAProxy Technologies

https://www.haproxy.com/

Table of Contents

Introduction 4

Essential Features of an API Gateway 6
HTTP routing 7
Load balancing 9
Server overload protection 11
Rate limiting 12
Detailed metrics and logs 13

Health Checks 17
Active health checks 17
Passive health checks 19
Agent health checks 22

Metrics 28
Important API metrics 28
How HAProxy publishes metrics 30
Visualizing the metrics 34

Caching 41
Why you should cache API responses 41
How to cache with HAProxy 43

Authentication 48
Authentication and authorization 48
OAuth 2 access tokens 51
API gateway sample application 53
Configure HAProxy for OAuth 2 56

Monetization 63
Set up the demo project 63

HAProxy as an API Gateway 2

Configure Keycloak 65
Get an access token 72
Configure access in HAProxy 74
Make a request 79

Security 81
Authentication 81
TLS encryption 83
Rate limiting 84
Anomalous behavior protection 85
Web application firewall 86
Bot management 87

HAProxy as an API Gateway 3

Introduction
An API gateway is simply a reverse proxy or load balancer
that sits between client applications and the API services
that they call.

An API gateway decouples client-side
applications—whether they be web applications, mobile
apps, IoT devices, or desktop applications—from the API
services that feed them data. Client applications no longer
need to connect to API servers directly, which would
complicate both the client and server by tying one to the
other. Instead, an API gateway mediates their
communication.

HAProxy, the world’s fastest and most widely used
software load balancer, fills the role as an API gateway
extremely well. In addition to routing API calls to the
proper backend servers, it also handles load balancing,
security, rate limiting, caching, monitoring, and other
cross-cutting concerns. By placing all of your APIs behind
an HAProxy load balancer, you can offload those
requirements.

In this book, you will learn how best to utilize HAProxy as
an API gateway, and simplify your infrastructure as a
result!

HAProxy as an API Gateway 4

slack.haproxy.org/

twitter.com/haproxy

github.com/haproxy/haproxy

hub.docker.com/u/haproxytech

HAProxy as an API Gateway 5

http://slack.haproxy.org/
https://twitter.com/haproxy
https://github.com/haproxy/haproxy
https://hub.docker.com/u/haproxytech

Essential Features of an
API Gateway
The API gateway becomes the glue layer that connects
requests from frontend applications to API endpoints on
the backend. It keeps these layers from becoming tightly
coupled. Your applications can point to a single
destination—the gateway—and it will handle the routing.

Routing is one of the essential features of an API gateway,
but there are others that are just as important. An API
gateway can handle:

● HTTP routing
● Load balancing
● Server overload protection

HAProxy as an API Gateway 6

● Rate limiting
● Metrics and logging

Let’s explore these features in more detail.

HTTP routing
The primary role of the API gateway is to route a client's
incoming requests to the appropriate internal service.
HAProxy can route based on any information found in the
HTTP request including portions of the URL path, query
string, and HTTP headers.

In the following example, our configuration sets up a
frontend that accepts incoming requests on port 443,
checks if the URL path is /cart or /catalog, and then
forwards them to the correct backend.

frontend api_gateway

bind :443 ssl crt /etc/haproxy/ssl/cert.pem

use_backend be_cart if { path_beg -i /cart }

use_backend be_catalog if { path_beg -i /catalog

}

backend be_cart

server s1 10.0.0.3:80

backend be_catalog

server s1 10.0.0.5:80

HAProxy as an API Gateway 7

If you need to inspect tens, hundreds, or even thousands
of paths in a single route, then it is better to manage them
through a map file. A map file stores key/value pairs in
memory.

In our example, the key would be the path string and the
value would be the name of the backend to route the
request to. The map file routing.map would contain:

endpoint backend name

/cart be_cart

/catalog be_catalog

Our HAProxy configuration would contain a use_backend
line that finds the backend name in the map file based on
which line in the file the URL path matches:

frontend api_gateway

...

use_backend

↪ %[path,map_beg("/etc/haproxy/routing.map")]

If you assign unique domain names to different APIs, then
you can check the Host header to determine how to route
requests. Below, we route API requests depending on the
domain. When accessing cart.haproxy.com, it routes to
the cart servers and when accessing catalog.haproxy.com
it routes to the catalog servers:

HAProxy as an API Gateway 8

frontend api_gateway

bind :443 ssl crt /etc/haproxy/ssl/cert.pem

use_backend be_cart if { req.hdr(Host) -i

↪ -m dom cart.haproxy.com }

use_backend be_catalog if { req.hdr(Host) -i

↪ -m dom catalog.haproxy.com }

backend be_cart

server s1 10.0.0.3:80

backend be_catalog

server s1 10.0.0.5:80

HAProxy is extremely flexible and these examples are just
simple use cases. You can apply more complex logic for
HTTP routing and request handling.

To simplify adding or removing rows to map files across a
cluster of HAProxy instances, you can upgrade to HAProxy
Enterprise and use the Update module.

Load balancing
You can improve the performance and resilience of your
API endpoints by replicating the service across several
nodes. Then, the API gateway will balance incoming client
requests among them. You can adjust the load balancing
algorithm to suit the type of service and protocol.

HAProxy as an API Gateway 9

https://www.haproxy.com/documentation/hapee/latest/management/update-module/

● For quick and short API calls, use the roundrobin
algorithm;

● For longer-lived websockets, use the leastconn
algorithm;

● For services that have backend servers optimized
to process particular functions, use the uri
algorithm, which hashes the URI so that future
requests for the same URI go to the same sever.

In the following example, the API backend is balanced
across two nodes using the roundrobin algorithm.

backend cart_api

balance roundrobin

server s1 10.0.0.3:80

server s2 10.0.0.4:80

Load balancing your API endpoints improves performance
and creates redundancy by sharing load across a pool of
servers. You can choose the most appropriate balancing
algorithm on a per-backend basis.

You can also define health checks for your servers so that
HAProxy automatically reroutes traffic if there’s a problem.
In the following example, we monitor the health of the
servers by sending GET requests to the URL path /health:

HAProxy as an API Gateway 10

backend mobile_api

balance roundrobin

option httpchk GET /health

server s1 10.0.0.3:80 check

server s2 10.0.0.4:80 check

The option httpchk directive sets the method (i.e. GET) and
URL to monitor. A check parameter on each server line
enables the feature.

Server overload protection
The HAProxy load balancer stands in a strategic position,
between your clients and services, ensuring that no
backend nodes are overloaded by spikes in traffic. Without
this, all requests would be forwarded to the backend
servers, risking high wait times and timeouts.

HAProxy implements queuing mechanisms to prevent
sending too many requests at once to a service. Add the
maxconn argument to a server directive to queue requests
in the gateway when the server is already handling 100
connections:

backend mobile_api

balance roundrobin

server s1 10.0.0.3:80 maxconn 100

server s2 10.0.0.4:80 maxconn 100

HAProxy as an API Gateway 11

In this case, up to 100 connections can be established at
once to a server. Any more than that will be queued. This
relieves strain on your servers, allowing them to process
requests more efficiently.

Rate limiting
You may want to limit the number of requests a client can
send to your APIs within a period of time. This might be to
enforce a limit depending on the user's API subscription
level, for example. To send more requests, clients could
subscribe to a higher-priced tier.

In HAProxy, stick tables, which are an in-memory data
storage, track clients by IP address, URL parameter, cookie,
or other HTTP header. In the next example, the client
passes a URL parameter called apitoken, which we use to
count their number of requests. They're limited to 1000
requests within 24 hours. The period is set with the expire
parameter on the stick-table directive.

HAProxy as an API Gateway 12

frontend api_gateway

bind :443 ssl crt /etc/haproxy/ssl/cert.pem

stick-table type string size 1m expire 24h

↪ store http_req_cnt

acl exceeds_limit

↪ url_param(apitoken),table_http_req_cnt gt 1000

http-request deny deny_status 429 if

exceeds_limit

http-request track-sc0 url_param(apitoken)

Now, as I make requests to the site, passing the URL
parameter, apitoken=mytoken, the count of HTTP
requests is incremented. When clients go past their limit,
they receive a 429 Too Many Requests response. Check out
our blog post Introduction to HAProxy Stick Tables for
more information about defining stick tables and other
examples of rate limiting.

Adding deny_status to the http-request deny directive allows
you to set a custom response code when rejecting
requests. Possible values are 200, 400, 403, 405, 408, 425,
429, 500, 502, 503, 504.

Detailed metrics and logs
HAProxy is famous for the level of details it provides on the
traffic it processes. There are two main features: the
statistic dashboard and the logs.

HAProxy as an API Gateway 13

https://www.haproxy.com/blog/introduction-to-haproxy-stick-tables/

Statistics Dashboard
HAProxy and HAProxy Enterprise provide a statistics page
that shows many metrics for each frontend, backend, and
server. Enable it by adding a frontend section with a stats
enable directive to your HAProxy configuration file. This will
start the HAProxy Stats page on port 8404:

frontend stats

bind *:8404

stats enable

stats uri /

stats refresh 5s

If you're running HAProxy Enterprise, then you have access
to the Real Time Dashboard, which gives you even more
options. The image below shows the HAProxy Enterprise
Real Time Dashboard:

This data is also available by querying the HAProxy
Runtime API, which can return results as JSON or CSV,

HAProxy as an API Gateway 14

https://www.haproxy.com/documentation/hapee/latest/management/real-time-dashboard/
https://www.haproxy.com/documentation/hapee/latest/api/runtime-api/
https://www.haproxy.com/documentation/hapee/latest/api/runtime-api/

making it easy to integrate with third-party monitoring
tools.

There's also a built-in Prometheus exporter. The image
below shows an integration of HAProxy with Grafana, via
the Prometheus exporter:

Logs
The HAProxy access logs are a trove of information, since
HAProxy can report the following information for each API
call:

● Client IP and port
● Routing info: frontend, backend, server selected
● Requested URL with query string
● Timers: time for the client to send the request,

server connection time, response time, total
session duration, etc…

● Termination status: did the session finished
properly or not? If not what happened and at what
phase of the session?

● Any custom header or cookie you want to capture
● SSL / TLS information

HAProxy as an API Gateway 15

https://www.haproxy.com/documentation/hapee/latest/observability/metrics/prometheus/

Based on all the information it provides, it's possible to
build reports that help to identify quickly where problems
are occurring (e.g. Is it networking? The application? A
particular server?).

Conclusion
In this chapter, you learned some of the essential features
of an API gateway. The HAProxy load balancer works as an
API gateway: managing routing, load balancing, server
overload protection, rate limiting and logging/metrics.

HAProxy as an API Gateway 16

Health Checks
HAProxy monitors the health of your servers and removes
them from the load balancing rotation if they go offline or
return errors, helping you to meet the service-level
objectives you've set for your API services.

In this chapter, you will learn several ways to configure
health checks to create highly available services using
HAProxy as an API gateway.

Active health checks
The easiest way to detect whether a server is up is with an
active check. HAProxy polls the server on a fixed interval by
trying to make a TCP connection. If it can’t connect, the
check fails and that server is removed from the load
balancing rotation.

Consider the following example:

backend apiservers

balance roundrobin

server server1 192.168.50.3:80 check

The check parameter on the server line enables active
health checking for that server. Once you’ve enabled active
checking, you can then add other parameters to change
the polling interval, the number of failed checks that

HAProxy as an API Gateway 17

trigger an action, and how many checks the server must
pass to be brought back online.

The next example demonstrates these parameters:

server server1 192.168.50.3:80 check inter 5s

↪ downinter 5s fall 3 rise 3

The inter parameter sets the interval between checks. It
defaults to two seconds. The downinter parameter sets the
interval between checks when the server is already in a
down state. The fall parameter sets the number of failed
checks allowed before marking the server as down and rise
sets how many successful checks there must be before
marking the server as up again.

For web applications, instead of basing the checks on
whether you can make a TCP connection, you can send an
HTTP request instead. Add option httpchk to the backend
section; HAProxy will send a simple HTTP request and
expect to receive a successful HTTP response:

backend apiservers

balance roundrobin

option httpchk GET /check

server server1 192.168.50.3:80 check

The option httpchk directive lets you choose the HTTP
method (e.g. GET), as well as the URL path to monitor (e.g.
/check). Having this flexibility means that you can dedicate
a specific webpage to be the health-check endpoint.

HAProxy as an API Gateway 18

You can accept only specific responses from the server too,
such as a specific status code or a string within the HTTP
body. Use http-check expect with either the status or string
keyword. In the following example, only health checks that
return a 200 OK response are classified as successful:

backend apiservers

balance roundrobin

option httpchk GET /check

http-check expect status 200

server server1 192.168.50.3:80 check

Or, require that the response body contain a certain
case-sensitive string of text. Below, we expect the body of
the response to contain the string success.

http-check expect string success

Passive health checks
Active checks are easy to configure and provide a simple
monitoring strategy. They work well in a lot of cases, but
they have one shortcoming: They don't catch errors that
affect parts of the application not in the direct line of sight
of the health check. For example, your health check may
poll the URL path /check, but not other web pages.

HAProxy as an API Gateway 19

Passive checks monitor all traffic for errors. Configure
passive health checks by by adding an observe parameter
to a server line. In the following example, the observe
parameter has a value of layer4, which means that it
watches all connections from HAProxy to the backend
server for failures:

backend apiservers

balance roundrobin

option redispatch

retries 3

timeout connect 4s

server server1 192.168.50.3:80 check inter 2m

↪ downinter 2m observe layer4 error-limit 10

↪ on-error mark-down

Here, we’re observing all TCP connections for problems.
We’ve set error-limit to 10, which means that ten
connections must fail before the on-error parameter is
invoked and marks the server as down. When that
happens, you’ll see a message like this in the HAProxy logs:

Server apiservers/server1 is DOWN, reason: Health analyze,
info: "Detected 10 consecutive errors, last one was: L4
unsuccessful connection". 1 active and 0 backup servers left. 0
sessions active, 0 requeued, 0 remaining in queue.

The only way to revive the server is with the regular health
checks. In this example, we’ve used inter to set the active
health check interval to two minutes. When they mark the

HAProxy as an API Gateway 20

server as healthy again, you’ll see a message telling you
that the server is back up:

Server apiservers/server1 is UP, reason: Layer4 check passed,
check duration: 0ms. 2 active and 0 backup servers online. 0
sessions requeued, 0 total in queue.

It’s a good idea to include option redispatch so that if a
client runs into an error connecting, they’ll be redirected to
another healthy server instantly. They’ll never know that
there was an issue. You can also add a retries parameter so
that HAProxy tries to connect the given number of times.
The delay between retries is set with timeout connect.

When you set observe layer4, HAProxy monitors traffic for
failed connections. You can also monitor for failed HTTP
requests by setting observe layer7. This will automatically
remove servers if users experience HTTP errors.

server server1 192.168.50.3:80 check inter 2m

↪ downinter 2m observe layer7 error-limit 10

↪ on-error mark-down

If any webpage returns a status code other than 100-499,
501 or 505, it will count towards the error limit. Beware,
however, that if enough users are getting errors on even a
single, misconfigured webpage, it could cause the entire
server to be removed.

HAProxy as an API Gateway 21

Agent health checks
Active and passive checks will give you a good indication of
how your application servers are functioning, instantly
removing bad nodes from load balancing. One downside
though is that they don’t give you a rich sense of the
server’s state, such as its CPU load, free disk space, and
network throughput.

With HAProxy, you can query agent software that's running
on the server itself. Since the agent has full access to the
remote server, it has the ability to check its vitals more
closely.

Agents have an edge over other types of health checks.
They can send signals back to HAProxy to force a change in
state. For example, they can mark the server as up or
down, put it into maintenance mode, change the
percentage of traffic flowing to it, and increase or decrease
the maximum number of concurrent connections allowed.
The agent will trigger your chosen action when some
condition occurs, such as when CPU usage spikes or disk
space runs low.

Consider this example that configures HAProxy to
communicate with a remote agent listening at port 9999
on the server:

HAProxy as an API Gateway 22

backend apiservers

balance roundrobin

server server1 192.168.50.3:80 check weight 100

↪ agent-check agent-inter 5s agent-addr

↪ 192.168.50.3 agent-port 9999

The server directive’s agent-check parameter tells HAProxy
to connect to an external agent; The agent-addr and
agent-port parameters set the agent’s IP address and port;
The interval between checks is set with agent-inter.

Note that this communication is not HTTP, but rather a raw
TCP connection over which the agent communicates back
to HAProxy by sending ASCII text. Here are a few things
that it might send back. Notice that an end-of-line
character (e.g. \n) is required after the message:

Sends back Result

down\n server is put into the down state

up\n server is put into the up state

maint\n server is put into maintenance mode

ready\n server is taken out of maintenance
mode

50%\n server’s weight is halved

maxconn:10\n server’s maxconn is set to 10

HAProxy as an API Gateway 23

The agent can be any custom-written software that has the
ability to return a string when HAProxy connects to it. The
following Go code creates a TCP server that listens on port
9999, measures the current CPU idle time, and if that
metric falls below 10 sends back the string 50%\n, which
sets the server’s weight in HAProxy to half.

HAProxy as an API Gateway 24

package main

import (

"fmt"

"time"

"github.com/firstrow/tcp_server"

"github.com/mackerelio/go-osstat/cpu"

)

func main() {

server := tcp_server.New(":9999")

server.OnNewClient(func(c *tcp_server.Client) {

fmt.Println("Client connected")

cpuIdle, err := getIdleTime()

if err != nil {

fmt.Println(err)

c.Close()

return

}

if cpuIdle < 10 {

// Set server weight to half

c.Send("50%\n")

} else {

c.Send("100%\n")

}

c.Close()

})

HAProxy as an API Gateway 25

server.Listen()

}

func getIdleTime() (float64, error) {

before, err := cpu.Get()

if err != nil {

return 0, err

}

time.Sleep(time.Duration(1) * time.Second)

after, err := cpu.Get()

if err != nil {

return 0, err

}

total := float64(after.Total - before.Total)

cpuIdle := float64(after.Idle-before.Idle) /

↪ total * 100

return cpuIdle, nil

}

To test it out, you can artificially spike the CPU with a tool
like stress. Use the HAProxy Stats page to see the effect on
the load balancer. Here, the server’s weight began at 100,
but is set to 50 when there is high CPU usage.

HAProxy as an API Gateway 26

https://www.tecmint.com/linux-cpu-load-stress-test-with-stress-ng-tool/

Look for the Weight column to assess the effects of your
stress test.

Conclusion
In this chapter, you learned various ways to health check
your servers so that your APIs maintain a high level of
reliability. This includes active, passive, and agent-based
health checks.

HAProxy as an API Gateway 27

Metrics
HAProxy publishes more than 100 metrics about the traffic
flowing through it. When you use HAProxy as an API
gateway, these give you insight into how clients are
accessing your APIs. Several metrics come to mind as
particularly useful, since they can help you determine
whether you’re meeting your service-level objectives and
can detect issues with your services early on.

Let’s discuss several that might come in handy.

Important API metrics
Are your API servers up? Keeping an eye on server health
status is critical for knowing how many servers are passing
the health-check probes that HAProxy sends. HAProxy
publishes the up/down status of every server along with
the pass/fail result of the most recent health check. You
could use this to know when more than 25% of your
servers are down, for example.

How often are clients calling your API’s functions? HAProxy
records request rate, which is great for seeing usage trends.
Knowing which services and functions are the most
popular could help when deciding where to add new
features or increase server capacity. Use it to reveal
unusual traffic patterns too, such as malicious activity like
DDoS attacks and faulty client-side code that may be
invoking a function repeatedly. HAProxy can enforce rate

HAProxy as an API Gateway 28

https://www.haproxy.com/blog/application-layer-ddos-attack-protection-with-haproxy/

limits to protect your servers. Detecting client-side code
that’s gone haywire might be important if you sell access to
your APIs and tie the price to the number of calls a client
makes.

Another important metric is the number of errors. When a
response from a server travels back through HAProxy on
its way to the client, we get its status code. For example,
statuses in the 400-499 range indicate client-side errors
and those in the 500-599 range indicate server-side errors.
A relatively small number of client-side errors may indicate
only a single misconfigured client, but a sharp increase
may be cause for concern; It may be due to a client
intentionally trying to abuse your service. Server-side
errors generally trace back to bugs introduced during the
last deployment.

Also keep an eye on average response time, since it shows
how snappy your APIs seem to clients. A slowdown may be
related to a slow database query or a sudden surge of
requests overwhelming your servers. Of course, HAProxy
can queue requests before they reach your servers so that
your servers always operate within the ideal range of
traffic volume.

A final counter to monitor closely is the number of retries.
HAProxy has the ability to retry a failed connection or HTTP
request. It can retry with the same server or, if the
redispatch option is set, retry with a different server. If the
second, third, or even subsequent try succeeds you won’t
see an error status in your HAProxy metrics, but you will
see your number of retries increase. A large number of
retries might implicate your network as the culprit.

HAProxy as an API Gateway 29

https://www.haproxy.com/blog/application-layer-ddos-attack-protection-with-haproxy/
https://www.haproxy.com/blog/protect-servers-with-haproxy-connection-limits-and-queues/
https://www.haproxy.com/blog/haproxy-layer-7-retries-and-chaos-engineering/
https://www.haproxy.com/blog/haproxy-layer-7-retries-and-chaos-engineering/

How HAProxy publishes
metrics
As HAProxy has evolved, it has included more and more
ways to extract its metrics. If you’re looking for a quick way
to see current numbers, enable the built-in HAProxy Stats
page. There you’ll find more than 100 unique metrics.
Although it doesn’t store historical data, it’s convenient for
checking server health, current request rate, error rate,
and more without any other monitoring software.

Enable the Stats page by adding this frontend section to
your HAProxy configuration file:

frontend stats

bind :8404

stats enable

stats uri /

stats refresh 10s

The dashboard then runs on port 8404:

HAProxy as an API Gateway 30

Learn about the fields shown on the Stats page in our blog
post Exploring the HAProxy Stats Page.

You can also fetch the same metrics in a more
programmatic way by using the HAProxy Runtime API.
First, enable the API by adding a stats socket directive to the
global section of your configuration. This exposes the API
as a Unix socket located at /var/run/haproxy.sock so you
can call it from scripts and programs running on the same
machine:

global

stats socket /var/run/haproxy.sock user haproxy

↪ group haproxy mode 660 level admin

You can also publish it on an IP address and port of your
choosing so that you can access it remotely. In the

HAProxy as an API Gateway 31

https://www.haproxy.com/blog/exploring-the-haproxy-stats-page/
https://www.haproxy.com/documentation/hapee/latest/api/runtime-api/

following example, the API listens at localhost on port
9999:

global

stats socket ipv4@127.0.0.1:9999 user haproxy

↪ group haproxy mode 660 level admin

Assuming you’re using the IP address, send the show stat
command to the API by using the socat program. You’ll get
the metrics in CSV format by default, but you can change
this to JSON by passing the json parameter. Piping the
JSON results to Python’s json.tool program formats the
output in a human-readable way.

$ echo "show stat json" |\

socat tcp-connect:127.0.0.1:9999 - |\

python3 -m json.tool

You can also pipe the results to the cut and column
commands to display only the data you want to see. Here,
we get the up/down status, request rate, number of errors,
average response time and number of retries for the
servers listed in a backend named be_api. The watch
command updates the numbers every two seconds:

HAProxy as an API Gateway 32

$ watch 'echo "show stat" |\

socat tcp-connect:127.0.0.1:9999 - |\

cut -d "," -f 1-2,16,18,43,44,47,61 |\

column -s, -t'

pxname svname wretr status hrsp_4xx

hrsp_5xx req_rate rtime

fe_api FRONTEND OPEN 0 0

10

be_api s1 0 UP 0

0 4

be_api s2 0 UP 0

0 4

be_api s3 0 UP 0

0 5

be_api s4 0 UP 0

0 5

be_api s5 0 UP 0

0 5

be_api BACKEND 0 UP 0

0 4

A third way to fetch metrics from HAProxy is through its
integrated Prometheus exporter. Prometheus is an
open-source tool for collecting and storing time-series
data. Applications that want to publish Prometheus
metrics host a webpage, usually at the URL /metrics, that
a Prometheus server will scrape at an interval. You’ll see
how to set this up in the next section.

HAProxy as an API Gateway 33

https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/
https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/

If you use HAProxy Enterprise, you have access to the Send
Metrics module too. This module lets you define a custom
format for your metrics and then stream them to any URL
that you choose. This makes it possible to integrate
HAProxy Enterprise with nearly any observability platform.

Visualizing the metrics
When it comes to visualizing HAProxy’s metrics over time,
there are many options—both free and commercial. To get
you started, I’ll demonstrate how to set up two
open-source graphing tools: Grafana from Grafana Labs
and Kibana from Elastic.

There are already integrations that link HAProxy’s metrics
with Grafana or Kibana, so you won’t need to build your
own. You only need to set up your chosen software, install
the plugin, and start using your data. Let’s go over the
steps for both options.

Grafana
Grafana is a popular choice for building graphs and
dashboards and it supports Prometheus as a data source.
So, you can leverage HAProxy’s Prometheus feature. It
works like this: HAProxy publishes its metrics at a known
URL, /metrics. A Prometheus server scrapes this page
every five seconds and stores the metrics over the long
term, which allows you to calculate historical trends.
Grafana fetches the data from the Prometheus server to
display graphs.

HAProxy as an API Gateway 34

https://www.haproxy.com/documentation/hapee/2-2r1/enterprise-modules/sendmetrics/
https://www.haproxy.com/documentation/hapee/2-2r1/enterprise-modules/sendmetrics/
https://grafana.com/
https://www.elastic.co/kibana

In this tutorial, we will use the prebaked HAProxy
dashboard from Ricardo F.’s grafana-dashboards code
repository.

● Follow the Prometheus installation instructions to
set up the Prometheus server that will store your
metrics.

● Check that the Prometheus exporter has been
compiled into your version of HAProxy. If not, you’ll
need to compile it in. Check by passing the -vv flag
to HAProxy:

$ haproxy -vv | grep "Prometheus exporter"

Built with the Prometheus exporter as a service

● Add a frontend to your HAProxy configuration that
listens on port 8404. This serves two purposes. It
enables the HAProxy Stats page and also the
Prometheus metrics web page. Configure it as
shown below:

frontend stats

bind :8404

stats enable

stats uri /

stats refresh 5s

http-request use-service prometheus-exporter

↪ if { path /metrics }

HAProxy as an API Gateway 35

https://prometheus.io/docs/prometheus/latest/installation/
https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/

● On your Prometheus server, edit the file
/etc/prometheus/prometheus.yml so that it
includes your HAProxy server in the list of targets
that it scrapes. Then restart the service. Here’s how
the file should look:

global:

scrape_interval: 5s

evaluation_interval: 5s

scrape_configs:

- job_name: 'haproxy'

static_configs:

- targets: ['172.25.0.11:8404']

● Follow the Grafana installation instructions to set
up a Grafana server. Once up and running, log in at
port 3000 using the username and password
admin / admin.

● Under the Configuration tab, add a new
Prometheus Data Source. Set the URL to your
Prometheus server. Then save it.

● Download Ricardo F.’s HAProxy Dashboard JSON
file from GitHub, which is a prebaked dashboard
with graphs for the HAProxy metrics.

● Go to the Dashboard > Import screen and paste the
JSON into the textbox. Then click Load.

The imported dashboard displays many graphs, including
those that show the metrics that we discussed earlier as
being important for monitoring APIs.

HAProxy as an API Gateway 36

https://grafana.com/docs/grafana/latest/
https://github.com/rfrail3/grafana-dashboards/blob/master/prometheus/haproxy-2-full.json

Kibana
Kibana is the dashboard component of the Elastic Stack, a
popular suite of tools for indexing and examining logs and
metrics. To use it, we’ll push HAProxy’s metrics to an
Elasticsearch database and then have Kibana display them.

We will use Metricbeat to ship HAProxy’s metrics to
Elasticsearch. Metricbeat’s HAProxy module uses the
Runtime API behind the scenes. Here’s how to set it up:

● Enable the HAProxy Runtime API by adding the
stats socket directive to the global section of your
configuration. In the example below, it listens on
port 9999:

global

stats socket ipv4@*:9999 user haproxy group

↪ haproxy mode 660 level admin

HAProxy as an API Gateway 37

● Deploy an Elasticsearch server. This is the database
that will hold your metrics data over the long term.

● Deploy Kibana on a server.
● On your HAProxy server, install Metricbeat.
● Enable the HAProxy Metricbeat module with the

following command:

$ metricbeat modules enable haproxy

● Edit the file /etc/metricbeat/metricbeat.yml so
that it lists your Elasticsearch server under the
output.elasticsearch section:

output.elasticsearch:

hosts: ["172.25.0.19:9200"]

● Edit the file
/etc/metricbeat/modules.d/haproxy.yml to
configure the HAProxy module so that the hosts
field includes the address and port where your
HAProxy Runtime API is listening:

- module: haproxy

metricsets: ["info", "stat"]

period: 10s

hosts: ["tcp://172.25.0.11:9999"]

enabled: true

● Start the Metricbeat service to begin shipping
HAProxy metrics to Elasticsearch:

HAProxy as an API Gateway 38

https://www.elastic.co/guide/en/elasticsearch/reference/7.10/install-elasticsearch.html
https://www.elastic.co/guide/en/kibana/7.10/install.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-installation-configuration.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-module-haproxy.html

$ sudo service metricbeat start

● Open Kabana in your browser. It listens at port
5601. Go to Kibana > Dashboard and click to Create
index pattern. Set the index pattern to metricbeat-*.

● On the next screen, set the Time field to
@timestamp. You should now see HAProxy metrics
when you search for them.

● Go to Kibana > Visualize and create a new
visualization. Try the Lens dashboard, which offers
an intuitive way to create graphs from your
metrics. You can search for metrics that begin with
haproxy and then drag them onto the visualization
canvas.

● In the screenshot below, I have dragged the
haproxy.stat.response.http.2xx, 3xx, 4xx, and 5xx
metrics onto the visualization.

HAProxy as an API Gateway 39

Conclusion
HAProxy provides many metrics that are essential when
proxying API traffic. A few that you should consider are
server health status, request rate, number of errors,
average response time, and number of retries. This data
can be extracted from HAProxy either through its Runtime
API or the built-in Prometheus exporter. There are already
integrations available for popular, open-source graphing
tools such as Grafana and Kibana. With minimal setup, you
can begin observing trends in your data.

HAProxy as an API Gateway 40

Caching
Something else that HAProxy adds is the ability to cache
API responses, which can boost how quickly clients receive
data. In this chapter, you will learn how to set up HAProxy’s
cache feature, which speeds up delivery of messages and
lessens the load placed upon your backend servers.

Why you should cache API
responses
When it comes to web applications, there are two readily
available caches: a client-side (browser) cache and a
server-side (HAProxy) cache. A browser’s cache will boost
performance for a single user. HAProxy’s cache, which is
known as a proxy cache, will speed it up for all users
because once a resource is cached in the proxy, it’s
available for anyone making the same request until it
expires. It’s easy to enable, but you should know how to
use it effectively.

HAProxy’s cache runs in memory, which makes it fast.
Other proxy caches need to read and write state on the
filesystem, which incurs some I/O latency. Also, because it
runs within HAProxy, you don’t need to contact an
upstream cache server, which means you have one less
transfer across the network. In some cases, however, you’ll
want the extra features of a shared cache server like

HAProxy as an API Gateway 41

Varnish. HAProxy’s caching feature is modest in
comparison, but it might be exactly what you need for
caching API responses.

Why should you cache API responses?

For one thing, it will speed up the time components take to
receive their data, which has a huge effect on how
responsive your website seems overall. One of the biggest
obstacles to adopting a component-based design (i.e. Vue,
React, Angular) is the fear that your webpage will render its
initial HTML page quickly, but linger in an unusable state
while the individual components wait to load. A lot of that
time waiting is spent processing the request on the web
server, pulling the requested data out of the database, and
forming the JSON-encoded response. Caching allows you
to perform those steps only once and then serve the saved
message to other clients.

Another reason to love proxy caching is because it reduces
load on your servers. They don’t need to process nearly as
many requests, many of which are likely the same request
they saw earlier. It’s perfectly fine to serve a slightly stale
response for content that doesn’t change extremely often,
such as daily news feeds, product descriptions, reviews,
and comment boards. Even caching this content for five or
ten seconds could have a worthwhile impact, depending
on the number of users viewing that same data. By the
way, caching for a very short period of time is known as
microcaching.

API functions that return data, rather than modify it, are
best suited for caching. This typically includes any function

HAProxy as an API Gateway 42

called with GET. Just be sure that your API responses do
not include any information that is specific to a user, such
as API keys, user profile data, and the like.

How to cache with HAProxy
In your HAProxy configuration file, add a cache section. It
goes at the same level as a global or defaults section. You
can have more than one cache section to create multiple
caches for different purposes, and each can set its own
max-age and other attributes.

global

global settings

defaults

default settings

cache mycache

total-max-size 4095 # MB

max-object-size 10000 # bytes

max-age 30 # seconds

The total-max-size directive sets the total amount of
memory that this cache can consume; It has a maximum
value of 4095 megabytes. The max-object-size directive sets
the largest size of a single item you can store in the cache,
and it can only be half of the total-max-size value. In this
example, I’ve set it to 10,000 bytes, which is 10 kilobytes. If
a response is larger, it simply won’t be cached. The last
directive, max-age, sets the time-to-live (TTL) in seconds for

HAProxy as an API Gateway 43

an item in the cache. After the TTL expires, the item will be
removed from memory.

Next, add an http-request cache-use and an http-response
cache-store directive to your backend section. The former
uses a cached resource if it’s found and the latter adds it to
the cache. Both take the name of a cache section.

frontend fe_api

bind :80

default_backend be_api

backend be_api

Get from cache / put in cache

http-request cache-use mycache

http-response cache-store mycache

server list

server s1 172.25.0.10:8080 check

You can also restrict which responses should be cached by
appending an if statement to the end of the http-request
cache-use directive. For instance, if you wanted to cache
only when the requested URL path begins with
/api/news_feed/, you would use the following:

HAProxy as an API Gateway 44

http-request cache-use api_cache

↪ if { path_beg /api/news_feed/ }

http-response cache-store api_cache

Notice that you add a condition to the http-request line, but
you do not need one on the http-response line. HAProxy is
designed to skip caching if there’s no chance the item will
ever be used. Alternatively, the backend server can return
a Cache-Control header with a no-store attribute to disable
caching of a particular response.

Cache-Control: no-store

The Cache-Control header also supports the s-maxage
attribute, which lets you override the TTL that was set in
HAProxy’s cache section. Consider the following
Cache-Control header, which allows the response to be
cached, but sets its TTL to 10 seconds:

Cache-Control: public,s-maxage=10

To see the TTL that was set on an item in the cache, call the
HAProxy Runtime API show cache command, which shows
the TTL as the expire field:

HAProxy as an API Gateway 45

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://www.haproxy.com/documentation/hapee/latest/api/runtime-api/show-cache/
https://www.haproxy.com/documentation/hapee/latest/api/runtime-api/show-cache/

$ echo "show cache" |\

socat tcp-connect:127.0.0.1:9999 -

0x7fcad7c9603a: api_cache (shctx:0x7fcad7c96000,

available blocks:4193280)

0x7fcad7c960c0 hash:3075548050 size:363 (1

blocks), refcount:0, expire:10

You can also get metrics about your cache, which can be
displayed in Grafana. If you’ve enabled Prometheus
metrics in HAProxy, scrape the following metrics from
HAProxy’s Prometheus endpoint (where the proxy label
would be the name of your frontend or backend):

● haproxy_frontend_http_cache_lookups_total{proxy
=”fe_api”}

● haproxy_frontend_http_cache_hits_total{proxy=”fe_
api”}

● haproxy_backend_http_cache_lookups_total{proxy
=”be_api”}

● haproxy_backend_http_cache_hits_total{proxy=”be
_api”}

These metrics show you how many cache lookups were
performed and how many resulted in a cache hit. You can
use that to adjust your TTL values.

One last trick: You can return a response header that
shows whether the requested resource was found in the
cache. Add these two lines to your frontend:

HAProxy as an API Gateway 46

https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/
https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/

http-response set-header X-Cache-Status HIT

↪ if { res.cache_hit -m bool }

http-response set-header X-Cache-Status MISS

↪ if !{ res.cache_hit -m bool }

HAProxy will set the X-Cache-Status header to HIT if the item
was found in the cache, or to MISS otherwise.

Conclusion
HAProxy’s cache helps boost the speed of your API
services, resulting in a more responsive website.

Define how long responses should be cached using the
max-age directive, which you can override with a
Cache-Control header. If there are certain responses that
should not be cached at all, you can use an if statement to
filter them out or you can set your Cache-Control header to
no-store.

The HAProxy Runtime API will show you how long items
will live in the cache and HAProxy’s Prometheus metrics
endpoint exposes counters for lookups and cache hits.
Now go and enjoy the benefits of proxy caching!

HAProxy as an API Gateway 47

Authentication
APIs provide direct access to backend systems and may
return sensitive information such as healthcare, financial
and PII data. APIs often expose create, update and delete
operations on your data too, which shouldn’t be open to
just anyone.

In this post, we’ll demonstrate how HAProxy defends your
APIs from unauthorized access with OAuth 2 access tokens
and shrinks the attack surface that you might otherwise
expose.

Authentication and
authorization
Let’s begin with a scenario where you have an API to
protect. For example, let’s say that this API provides
methods related to listing pets up for adoption. It has the
following API endpoints:

API endpoint What it does

GET /api/pets Returns a list of pets ready to be
adopted

POST
/api/pets/{name}

Adds a newly arrived pet to the list

DELETE Removes a pet from the list after it

HAProxy as an API Gateway 48

/api/pet/{name} has found a home

This fictitious API lets you view available pets, add new
ones to the list, and remove them after they’ve been
adopted to loving homes. For example, you could call GET
/api/pets like this:

GET https://api.example.com/api/pets

[

{ "species": "hamster", name: "lloyd" },

{ "species": "fish", name: "franklin" },

{ "species": "cat", name: "lisa" },

{ "species": "dog", name: "barney" },

]

This would be consumed by your frontend application,
perhaps through Ajax or when loading the page. For
requests like this that retrieve non-sensitive information,
you may not ask users to log in and there may not be any
authentication necessary.

For other requests, such as those that call the POST and
DELETE endpoints for adding or deleting records, you may
want users to log in first. If an unauthenticated user tries
to call the POST and DELETE API methods, they should
receive a 403 Forbidden response.

HAProxy as an API Gateway 49

There are two terms that we need to explain:
authentication and authorization. Authentication is the
process of getting a user’s identity. Its primary question is:
Who is using your API? Authorization is the process of
granting access. Its primary question is: Is this client
approved to call your API?

OAuth 2 is a protocol that authenticates a client and then
gives back an access token that tells you whether or not
that client is authorized to call your API. For the most part,
the concept of identity doesn’t play a big part in OAuth 2,
which is concerned with authorization. Think of it like going
to the airport, and at the first gate you are meticulously
inspected by a number of set criteria. Upon inspection, you
are free to continue on to your terminal where you can buy
overpriced coffee, duty-free souvenir keychains and maybe
a breakfast bagel. Since you’ve been inspected and have
raised no red flags, you are free to roam around.

In a similar way, OAuth 2 issues tokens that typically don’t
tell you the identity of the person accessing the API. They
simply show that the user, or the client application that the
user has delegated their permissions to, should be allowed
to use the API. That’s not to say that people never layer on
identity properties into an OAuth token. However, OAuth 2
isn’t officially meant for that. Instead, you would use
something like OpenID Connect, which is layered on top of
OAuth 2, if you need identity information.

As we described in earlier chapters, an API gateway is a
proxy between the client and your backend API services
that routes requests intelligently. It also acts as a security

HAProxy as an API Gateway 50

https://www.oauth.com/oauth2-servers/access-tokens/

layer. When you use HAProxy as your API gateway, you can
validate OAuth 2 access tokens that are attached to
requests.

For simplifying your API gateway and keeping the
complicated authentication pieces out of it, you’ll offload
the task of authenticating clients to a third-party service
like Auth0 or Okta. These services handle logging users in
and can distribute tokens to clients that successfully
authenticate. A client application would then include the
token with any requests it sends to your API.

Let's see how to configure HAProxy to validate access
tokens.

OAuth 2 access tokens
An OAuth 2 access token uses the JSON Web Token (JWT)
format and contains three base64-encoded sections:

● A header that contains the type of token (JWT in this
case) and the algorithm used to sign the token;

● A payload that contains:
○ the URL of the token issuer
○ the audience that the token is intended for

(your API URL)
○ an expiration date
○ any scopes (e.g. read and write) that the

client application should have access to;

HAProxy as an API Gateway 51

● A signature to ensure that the token is truly from
the issuer and that it has not been tampered with
since being issued.

We won’t focus on how a client application gets a token. In
short, you’d redirect users to a login page hosted by a
third-party service like Auth0 or Okta. Instead, we’ll
highlight how to validate a token. You will see how
HAProxy can inspect a token that’s presented to it and
then decide whether to let the request proceed.

An access token contains many fields, but a few that are
most interesting are:

● alg, the algorithm, which is often set to RS256, that
was used to sign the token;

● iss, the issuer, or the service that authenticated the
client and created the token;

● aud, the audience, which is the URL of your API
gateway;

● exp, the expiration date, which is a UNIX
timestamp;

● scope, which lists the granular permissions that the
client has been granted (Note that Okta calls this
field "scp", so the Lua code that we'll use would
have to be modified to suit).

HAProxy as an API Gateway 52

API gateway sample
application
To follow this tutorial, you have two options:

● You can clone the sample application from Github
and use Vagrant to set it up.

● You can clone the JWT Lua code repository by itself.
It provides an install script to assist with installing
the Lua library and its dependencies into your own
environment.

The workflow for authorizing users looks like this:

1. A client application uses one of the Client
Credentials Flow to request a token from the
authentication service.

2. Once the client has received a token, it stores it so
that it can continue to use it until it expires.

3. When calling an API method, the application
attaches the token to the request in an HTTP
header called Authorization. The header's value is
prefixed with Bearer, like so:

Authorization: Bearer <token>

4. HAProxy receives the request and performs the
following checks:

HAProxy as an API Gateway 53

https://github.com/haproxytechblog/haproxy-jwt-vagrant
https://github.com/haproxytech/haproxy-lua-jwt
https://auth0.com/docs/flows/client-credentials-flow
https://auth0.com/docs/flows/client-credentials-flow

a. Was the token signed using an algorithm
that the Lua code understands?

b. Is the signature valid?
c. Is the token expired?
d. Is the issuer of the token (the

authenticating service) who you expect?
e. Is the audience (the URL of your API

gateway) what you expect?
f. Are there any scopes that would limit which

resources the client can access?
5. The application continues to send the token with

its requests until the token expires, at which time it
repeats Step 1 to get a new one.

To test it out, sign up for an account with Auth0. Then, you
can use curl to craft an HTTP request to get a new token
using the client credential grant flow. POST a request to
https://{your_account}.auth0.com/oauth/token and get
an access token back. The Auth0 website gives you some
helpful guidance on how to do this.

Here’s an example that asks for a new token via the
/oauth/token endpoint. It sends a JSON object containing
the client’s credentials, client_id and client_secret:

HAProxy as an API Gateway 54

https://auth0.com/
https://auth0.com/docs/api-auth/tutorials/client-credentials
https://auth0.com/docs/api-auth/tutorials/client-credentials

$ curl --request POST \

--url 'https://myaccount.auth0.com/oauth/token'

\

--header 'content-type: application/json' \

--data '{"client_id": "abcdefg12345",

↪ "client_secret": "HIJKLMNO67890", "audience":

↪ "https://api.example.com", "grant_type":

↪ "client_credentials", "scope": "read:pets

↪ write:pets"}'

You’ll get back a response that contains the JWT access
token:

{

"access_token":

"eyJ0eXAiOiJKV1QiLCJhbGciOiJS...",

"scope": "write:hamsters read:hamsters",

"expires_in": 86400,

"token_type": "Bearer"

}

In a production environment, you would use the Client
Credentials workflow only with trusted client applications
where you can protect the client ID and secret.

Now that you have a token, you can call methods on your
API. One of the benefits of OAuth 2 over other
authorization schemes like session cookies is that you
control the process of attaching the token to the request.

HAProxy as an API Gateway 55

Whereas cookies are always passed to the server with
every request, even those submitted from an attacker’s
website as in CSRF attacks, your client-side code controls
sending the access token. An attacker will not be able to
send a request to your API URL with the token attached.

A POST request that includes the token will look like this:

curl --request POST \

--url https://api.example.com/api/pets \

--data '{ "species": "fish", name: "wanda" }' \

--header 'authorization: Bearer

↪ eyJ0eXAiOiJKV1QiLCJhbGciOiJS...'

In the next section, you’ll see how HAProxy can, with the
addition of some Lua code, decode and validate access
tokens.

Configure HAProxy for
OAuth 2
Before an issuer like Auth0 gives a client an access token, it
signs it. Since you’ll want to verify that signature, you’ll
need to download the public key certificate from the token
issuer’s website. On the Auth0 site, you’ll find the
download link under Applications > [Your application] >
Settings > Show Advanced Settings > Certificates. Note,
however, that it will give you a certificate in the following
format:

HAProxy as an API Gateway 56

-----BEGIN CERTIFICATE-----

MIIDATCCAemgAwIBAgIJOTQvWZNFMdgBMA0GCSqGSIb3DQEBCw

UAMB4xHDAaBgNVBAMTE25pY2tyYW00NC5hdXRoMC5jb20wHhcN

MTgxMDA5MDA1OTMyWhcNMzIwNjE3MDA1OTMyWjAeMRwwGgYDVQ

QDExNuaWNrcmFtNDQuYXV0aDAuY29tMIIBIjANBgkqhkiG9w0B

AQEFAAOCAQ8AMIIBCgKCAQEAvIL8bebCh+pi68Rt0CCu104VqR

10kuD0

E1yzwaywvaEiyhfUeDDKAyKC8yS5ilu9xyWK/pg/84RiWq7Woq

hUm8L06jtknn/ZCOuyUdkn1QcdOG10lbbrUF1AOduTIvFYyT4z

HrIcKt6MyeQUO0kHcXQU7lvM2C62BboAasZFupDts1m1kPZMWa

iSjLrE1eruhl8NrfipiPWMZJSJoYCQcmtN3REXk9z8X7ZPgcMJ

9hNN+Kv0fTYLZI4wS4TpHscVfbK18cL4uLrTCcip7jNey2KZ/Y

dbeHgmmcQAdiB4veH4I2dAyqIdsy8Jk+KTs3Ae8qp+S3XtC8z/

uXMbN7lRAwIDAQABo0IwQDAPBgNVHRMBAf8EBTADAQH/MB0GA1

UdDgQWBBRh4OxTHcFgxEk96rKbvWHibUeBwzAOBgNVHQ8BAf8E

BAMCAoQwDQYJKoZIhvcNAQELBQADggEBACYMzTV0kHcRDwJyj+

XHmmFimPCcgOPOwo4h4eSRIq8XCyFhdOlhuyj8T6ESClKaAz5O

mKvXBBP7OnpkUcrbv1VaNCluc/X6in2hptru3L/Ouxjv22QwCW

NVB288ns3cYszr5M1ycaWnqXDmY4/xoK3phUcTIQBFY1I1JuKx

DzSihDeEAlkXMYwiCSreG1WuAmyA3oWEfdpfnwwz3QT2YTRs3P

/IKSlLeYzC1Wn5BYrmyHK1EC7scTofdFz+OqldINLB08kk7Axv

73hwD72zNfYVzX9Eh+d3jH6u6TsLD2M6dvTvYyMP8yRLy1LbbR

paZBfFdDrEtqOO0+61o9gGYJE=

-----END CERTIFICATE----

This contains the public key that you can use to validate
the signature, but also extra metadata that can’t be used.
Invoke the following OpenSSL command to convert it to a
file containing just the public key:

HAProxy as an API Gateway 57

$ openssl x509 -pubkey -noout \

-in ./mycert.pem > pubkey.pem

This will give you a new file called pubkey.pem that is
much shorter:

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvIL8be

bCh+pi68Rt0CCu104VqR10kuD0E1yzwaywvaEiyhfUeDDKAyKC

8yS5ilu9xyWK/pg/84RiWq7WoqhUm8L06jtknn/ZCOuyUdkn1Q

cdOG10lbbrUF1AOduTIvFYyT4zHrIcKt6MyeQUO0kHcXQU7lvM

2C62BboAasZFupDts1m1kPZMWaiSjLrE1eruhl8NrfipiPWMZJ

SJoYCQcmtN3REXk9z8X7ZPgcMJ9hNN+Kv0fTYLZI4wS4TpHscV

fbK18cL4uLrTCcip7jNey2KZ/YdbeHgmmcQAdiB4veH4I2dAyq

Idsy8Jk+KTs3Ae8qp+S3XtC8z/uXMbN7lRAwIDAQAB

-----END PUBLIC KEY-----

In the sample project, I store this file in the pem folder and
then Vagrant syncs that folder to the VM. I then use an
environment variable to tell the Lua code where to find it.
In fact, I use environment variables for passing in several
other parameters as well. Use setenv in your HAProxy
configuration file to set an environment variable:

HAProxy as an API Gateway 58

global

lua-load /usr/local/share/lua/5.3/jwtverify.lua

setenv OAUTH_PUBKEY_PATH

↪ /usr/local/etc/haproxy/pem/pubkey.pem

setenv OAUTH_ISSUER https://myaccount.auth0.com/

setenv OAUTH_AUDIENCE https://api.mywebsite.com

A lua-load directive loads a Lua library called jwtverify.lua
that contains code for validating access tokens. Get this
library from the JWT Lua code repository.

Next, the frontend receives requests on port 443 and
performs various checks by invoking the jwtverify.lua file.
Here we’re using ACL statements to define conditional
logic that allows or denies a request. ACLs are a powerful
and flexible system within HAProxy and one of the building
blocks that make it so versatile.

HAProxy as an API Gateway 59

https://github.com/haproxytech/haproxy-lua-jwt
https://www.haproxy.com/blog/introduction-to-haproxy-acls/

frontend api_gateway

Use HTTPS to protect the secrecy of the token

bind :443 ssl crt

↪ /usr/local/etc/haproxy/pem/test.com.pem

Accept GET requests and skip further checks

http-request allow if { method GET }

Deny the request if it's missing an

Authorization header

http-request deny unless {

req.hdr(authorization)

↪ -m found }

Verify the token

http-request lua.jwtverify

http-request deny unless { var(txn.authorized)

↪ -m bool }

(Optional) Deny the request if it's a

POST/DELETE to a path beginning with

/api/pets, but the token doesn't

include the "write:pets" scope

http-request deny if { path_beg /api/pets } {

↪ method POST DELETE } ! { var(txn.oauth_scopes)

↪ -m sub write:pets }

If no problems, send to the apiservers backend

default_backend apiservers

HAProxy as an API Gateway 60

The first http-request deny line rejects the request if the
client did not send an Authorization header at all. The next
line, http-request lua.jwtverify, invokes the Lua library, which
performs the following actions:

● decodes the JWT,
● checks that the algorithm used to sign the token is

supported (RS256),
● verifies the signature,
● ensures that the token is not expired,
● compares the issuer in the token to the

OAUTH_ISSUER environment variable,
● compares the audience in the token to the

OAUTH_AUDIENCE environment variable,
● if any scopes are defined in the token, adds them

to an HAProxy variable called txn.oauth_scopes so
that subsequent ACLs can check them,

● if everything passes, sets a variable called
txn.authorized to true.

The next http-request deny line rejects the request if the
Lua library did not set a variable called txn.authorized to a
value of true. Notice how booleans are evaluated by adding
the -m bool flag.

The next two lines reject the request if the token does not
contain a scope that matches what we expect for the HTTP
path and method. Scopes in OAuth 2 allow you to define
specific access restrictions. In this case, POST and DELETE
requests require the write:pets permission. Scopes are

HAProxy as an API Gateway 61

optional and some APIs don’t use them. You can set them
up on the Auth0 website and associate them with your API.
If the client should have these scopes, they’ll be included in
the token.

To summarize, any request for /api/pets must meet the
following rules:

● It must send an Authorization header that contains
a JWT access token

● The token must be valid
● The token must contain a scope that matches what

you expect

With this configuration in place, you can use curl to send
requests to your API, attaching a valid token, and expect to
get a successful response. Using this same setup, you’d
lock down your APIs so that only authenticated clients can
use them.

Conclusion
In this chapter, you learned more about using HAProxy as
an API gateway, leveraging it to secure your API endpoints
using OAuth 2.

Clients request tokens from an authentication server,
which sends back a JWT. That token is then used to gain
access to your APIs. With the help of some Lua code,
HAProxy can validate the token and protect your APIs from
unauthorized use.

HAProxy as an API Gateway 62

HAProxy as an API Gateway 63

Monetization
In the previous chapter, you learned that when you
operate HAProxy as an API gateway, you can restrict access
to your APIs to only clients that present a valid OAuth 2
access token. In this chapter, we take it a step further. You
will learn how to leverage tokens to grant some users
more access than others and then charge for the service.
This is called API monetization and it’s one way to turn your
APIs, and the data that they expose, into a profitable
enterprise.

Set up the demo project
You’ll find the example code in our GitHub repository. We
use Docker Compose to create the following components
in a self-contained, virtual network:

● an HAProxy server, which acts as an API gateway,
● three API servers behind HAProxy,
● a Keycloak server, also behind HAProxy, which acts

as our authentication server.

Here’s how it all fits together: When HAProxy receives an
API call—which is any HTTP request that has a URL
beginning with /api/—it relays it to one of the three API
servers behind it. However, clients must attach access
tokens, which are like digital members-only cards, to their
requests before HAProxy will grant them access. An access
token bestows certain privileges to the client that presents
it. In our demo, each client has a right to make HTTP

HAProxy as an API Gateway 64

https://github.com/haproxytechblog/haproxy-api-monetization-demo

requests to our service, but some clients are allowed to
make more requests per minute than others depending on
their token.

HAProxy can validate a token, read its properties, and
make decisions based on those properties. We imprint our
tokens with a subscription level: bronze, silver, or gold.
Bronze is the lowest tier and clients who present a token
with that level are granted only 10 requests per minute.
Silver clients get 100 requests per minute and those with a
gold level are allowed 1000 requests per minute.

That’s one end of the equation. The other is the party that
creates the tokens. As you saw in the previous chapter
about authentication and authorization, HAProxy will work
with a variety of OAuth 2 token providers, including Auth0
and Okta. In this post, we use a self-hosted authentication
server called Keycloak. We place our Keycloak server
behind HAProxy and whenever a client requests a URL
beginning with /auth/, HAProxy routes it there. Typically,
these requests are either a client requesting a token or
you, the administrator, adding clients to the system.

With these subscription levels in place and HAProxy
granting access only to clients that have a token, you can
of course start charging a fee to access your service. Et
voilà! API monetization. Let’s see how to set it up!

Before a client can send a request to your API servers, they
must authenticate with Keycloak, get an OAuth 2 access
token from it, and present that token to HAProxy. HAProxy

HAProxy as an API Gateway 65

https://www.keycloak.org/

then verifies whether the token is valid before allowing the
client to proceed with their request.

First, download the sample project and then initialize the
components by calling Docker Compose:

$ git clone

↪ https://github.com/haproxytechblog/haproxy-api-

↪ monetization-demo.git

$ cd haproxy-api-monetization-demo

$ sudo docker-compose up -d

These commands start up HAProxy, Keycloak, and the API
servers.

Configure Keycloak
Once the demo is up and running, go to
http://localhost/auth/ and log into the Keycloak

HAProxy as an API Gateway 66

https://github.com/haproxytechblog/haproxy-api-monetization-demo

Administration Console with the username and password
admin.

When you first log in, you’ll see the configuration screen
for the top-most realm. From here, you have full access to
all of Keycloak.

HAProxy as an API Gateway 67

Next, you’ll need to create new realms for each service that
you want to monetize. Within each realm, you can add
authorized clients. First, click the top-level dropdown menu
where it says Master and choose Add realm. For this
example, set the new realm’s name to weather-services.
Then click Create.

You are taken to the Realm Settings page for the
weather-services realm.

HAProxy as an API Gateway 68

From here click the Tokens tab, set the Default Signature
Algorithms field to RS256, and then click Save. Keycloak will
now sign its access tokens with its private key and, later,
HAProxy will use Keycloak’s public key to verify that
signature.

Click the Client Scopes link next. Add three scopes—bronze,
silver, and gold—which will serve as different pricing tiers
for accessing your Weather Services APIs. Click the Create
button and add each of these scopes.

After you’ve created the bronze, silver, and gold scopes,
click the Clients link. In the most technical sense, a client is
an application that accesses your services. For example,
the client might be a web application that uses your API to
get up-to-date weather forecasts. More broadly, a client
may be a customer who has signed up to call your service,
and they may do so from multiple applications.

HAProxy as an API Gateway 69

Click the Create button on the Clients screen to add a new
client.

When adding a client, you’re asked to assign a unique
Client ID. This can be any string, such as the organization’s
name, an email address, or a GUID. The client will use this
ID when they access your services, so it must be something
you don’t mind sharing with them. In this exercise, I set the
Client ID to acme-corp.

After you’ve created the client, you’re taken to the client’s
Settings screen. Because we want to enable
machine-to-machine authentication, you must enable the
OAuth 2 Client Credentials grant. That’s what OAuth calls
the workflow for allowing an application to request an
access token. To enable this on the Settings screen, change
the Access Type field to confidential and set Service Accounts
Enabled to on.

You can set Standard Flow Enabled and Direct Access Grants
Enabled to off. We won’t be using those types of grants.

HAProxy as an API Gateway 70

Click Save at the bottom of the screen and then on the
Client Scopes tab, add the bronze scope. Remove all of the
other previously assigned client scopes. One peculiar
behavior of Keycloak is that by default it assigns the roles
client scope, which has the effect of adding a second value
to the aud field in the token, which you don’t want. Play it
safe and remove all extra scopes.

HAProxy as an API Gateway 71

Next, go to the Mappers tab and create a new mapper. Set
its Mapper Type field to Audience and its Included Custom
Audience field to the URI of your API service. In this
example, I set it to
http://localhost/api/weather-services. The audience
value will need to match what we hardcode in the HAProxy
configuration. It’s one way that HAProxy validates the
token.

Now you’re ready to play the role of a client requesting
access to your services. We’ve given the acme-corp client a
scope called bronze, which will mean they’re allowed up to

HAProxy as an API Gateway 72

10 API calls per minute. That rate limit is handled by
HAProxy.

Get an access token
Now that you’ve configured a client in Keycloak, you can try
out getting an access token. First, copy the Client ID from
the acme-corp Client page and the Secret from the
Credentials page. Then, use curl to request a new access
token, providing the client_id and client_secret fields with
your request. Note that we set the grant_type field to
client_credentials:

$ curl --request POST \

--url

↪ 'http://localhost/auth/realms/weather-services/

↪ protocol/openid-connect/token' \

--data 'client_id=acme-corp' \

--data 'client_secret=7f2587ee-a178-4152-bd91-

↪ 7b758c807759' \

--data 'grant_type=client_credentials'

{"access_token":"eyJhbGciOiJSUzI1NiIsI...","expire

s_in":300,"refresh_expires_in":0,"token_type":"Bea

rer","not-before-policy":0,"scope":"bronze"}

The request returns a JSON document that includes an
access token. The token is encoded, but you can decode it

HAProxy as an API Gateway 73

by pasting it into the Encoded textbox on the https://jwt.io/
website. An example of the decoded fields is shown below.

You’ll find three of the fields especially interesting:

● iss is the issuer, or the service that authenticated
the client and created the token; In this case, it’s set
to
http://localhost/auth/realms/weather-services,
which is the Keycloak realm for our weather-services
API.

● aud is the audience, which is the URL of your API
gateway; In this case, it’s set to
http://localhost/api/weather-services.

● scope is the list of permissions granted to the
client; It includes bronze.

HAProxy as an API Gateway 74

https://jwt.io/

The scope field includes the bronze client scope, which we
will use when setting a rate limit for this client.

Configure access in
HAProxy
First, you need to configure HAProxy so that it limits access
to your services to only authorized clients. Install the JSON
Web Token (JWT) library into HAProxy, which is a Lua
library that inspects incoming OAuth 2 access tokens that
are attached to HTTP requests. The library’s GitHub page
has instructions for how to install it, but in the demo
project the library is already installed as part of the Docker
container’s image.

Next, configure the library. In the global section of your
HAProxy configuration file, use the setenv directive to
define the issuer, audience and public key that HAProxy
should use when validating tokens.

HAProxy as an API Gateway 75

https://github.com/haproxytech/haproxy-lua-jwt
https://github.com/haproxytech/haproxy-lua-jwt

global

lua-load /usr/local/share/lua/5.3/jwtverify.lua

setenv OAUTH_ISSUER

↪ http://localhost/auth/realms/weather-services

setenv OAUTH_AUDIENCE

↪ http://localhost/api/weather-services

setenv OAUTH_PUBKEY_PATH

↪ /etc/haproxy/pem/pubkey.pem

The issuer and audience must match the token’s iss and
aud fields exactly or else the token won’t be accepted. That
ensures that the token comes from a trusted souce
(Keycloak) and is meant for our API only.

HAProxy uses the public key to verify the digital signature
on the token. Keycloak uses its private key to sign the
access tokens it gives to clients. HAProxy verifies that
signature by comparing it with Keycloak’s public key, which
it stores locally.

In our example project, the public key, pubkey.pem, is
mounted as a volume into the HAProxy container.
Download the key from Keycloak by going to the
weather-services Realm Settings > Keys page and clicking
the Public key link on the row that says RS256.

HAProxy as an API Gateway 76

Replace the contents of the file pubkey.pem in the demo
project with the value from Keycloak. You must prefix the
value with —–BEGIN PUBLIC KEY—– and end it with —–END
PUBLIC KEY—–, as shown here:

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoG0pxf

K54qjF8gUzjARji3D2VZ9x7UTRE+75SoIcSHkPWg8Dlb/DzDNp

ofG8bB3FyvcqihF0sFTnbQG4+2XKODuxeG2o609YhGvai0hHNZ

FXZEANMAoRSEdSq3oCDiAladKez92VjxDjo3W9zLvFhAAYEGQD

BvRTqbbHhsCm5fm2k7A3wMB5H0G/i2x6ZDD5tA7LsIngyJwELS

IjFzIfP8xylJdppWwQFJEjYagCXahO4WW+oOMpFs+X1gJ3xBlN

6pLsVSNWrKZMe/qpZDzQO8qnGoVI7tkZpCkR62B7OyVGzjDB0N

wJTwN787xuTURsDNF0Gm3rFgSVnVokn07rqQIDAQAB

-----END PUBLIC KEY-----

Next, in the frontend section where you want to restrict
client access, add the following configuration directives:

HAProxy as an API Gateway 77

frontend fe_api

bind :80

a stick table stores the count of requests

each clients makes

stick-table type ipv6 size 100k expire 1m

↪ store http_req_cnt

allow 'auth' request to go straight through

to Keycloak

http-request allow if { path_beg /auth/ }

use_backend keycloak if { path_beg /auth/ }

deny requests that don't send an access token

http-request deny deny_status 401 unless {

↪ req.hdr(authorization) -m found }

verify access tokens

http-request lua.jwtverify

http-request deny deny_status 403 unless {

↪ var(txn.authorized) -m bool }

add the client's subscription level to

the access logs: bronze, silver, gold

http-request capture var(txn.oauth_scopes) len

10

deny requests after the client exceeds

their allowed requests per minute

http-request deny deny_status 429 if {

↪ var(txn.oauth_scopes) -m sub bronze } {

HAProxy as an API Gateway 78

↪ src,table_http_req_cnt gt 10 }

http-request deny deny_status 429 if {

↪ var(txn.oauth_scopes) -m sub silver } {

↪ src,table_http_req_cnt gt 100 }

http-request deny deny_status 429 if {

↪ var(txn.oauth_scopes) -m sub gold } {

↪ src,table_http_req_cnt gt 1000 }

track clients' request counts. This line

will not be called once the client is

denied above, which prevents them from

perpetually locking themselves out.

http-request track-sc0 src

default_backend be_api

This configuration requires that all requests include a valid,
non-expired access token. It also checks the token’s scopes
to see which subscription level was assigned. Bronze level
allows up to 10 requests per minute, silver allows 100
requests per minute, and gold allows 1000 requests per
minute.

Restart the HAProxy Docker container to load the new
settings:

HAProxy as an API Gateway 79

$ sudo docker-compose restart haproxy

Make a request
Try it out by first getting an access token using the
following curl command:

$ curl --request POST \

--url 'http://localhost/auth/realms/weather-

↪ services/protocol/openid-connect/token' \

--data 'client_id=acme-corp' \

--data 'client_secret=9e9e2acc-cd15-4878-9e5a-

↪ c815d29a976f' \

--data 'grant_type=client_credentials'

Copy the access token from the response and paste it into
the following command where it says [ACCESS_TOKEN]:

$ curl --request GET \

--url http://localhost/api/weather-services

↪ /43213 \

--header 'authorization: Bearer [ACCESS_TOKEN]'

You should get back a valid JSON response. If not, check
HAProxy’s logs with the docker-compose logs haproxy
command. Since we configured the acme-corp client to
have bronze access, you can make only 10 requests per

HAProxy as an API Gateway 80

minute, after which you will get a 429 Too Many Requests
error.

Try assigning the silver or gold scope to the acme-corp
client via the Keycloak Administration Console, fetching a
new token, and then retrying the GET request. You should
be allowed more requests per minute.

Conclusion
When you use HAProxy as an API gateway, you can validate
OAuth 2 access tokens. By imprinting subscription levels
into the tokens, you can monetize your APIs, charging a fee
for expanded access. Monetization can be a smart move
once your APIs reach a certain level of popularity, and you
can even continue to offer a free tier to entice newcomers.
With HAProxy, you can layer on this functionality at any
point.

API monetization can take many forms and rate limiting is
only one aspect. Yet, it’s one that’s used successfully by
many companies. To protect your customers, you’ll want to
add security protections that deter bots and malicious
users.

HAProxy as an API Gateway 81

Security
In almost every case, APIs have changed how modern
applications connect to their data. Mobile apps,
single-page web apps, IoT devices, integration hooks
between software—all of these things rely on APIs to fetch,
update, delete, and create data. In fact, one set of APIs
might serve as the backbone of a website, mobile app,
voice assistant device, and more, meaning one data store
owns a treasure trove of information about us, the human
users.

All of this to say that APIs are irresistible targets to
would-be attackers. They would love to gain access to that
data: to steal it, to categorize it, and to sell it.

In this chapter, we’ll discuss ways to improve the security
of your APIs. We’ll see how placing your servers behind
HAProxy and using it as an API gateway lets you narrow
the point of entry for attackers. From this defensive
position, you can build up your countermeasures. We will
discuss the benefits of enabling authentication, TLS
encryption, rate limiting, anomalous behavior protection, a
web application firewall, and bot management in your API
gateway.

Authentication
Who should have access to your APIs?

HAProxy as an API Gateway 82

Few APIs allow open access to anonymous users. Even free
APIs that publish non-sensitive data will benefit from
requiring some form of login. That’s because at the very
least it gives you insight into how many distinct clients are
using your services. It also makes it easier to rate limit
specific users, even if they connect from multiple devices
or IP addresses.

Authentication is the process of identifying who a user is.
From a security standpoint, authenticating clients shrinks
the attack surface. If only verified users have access, then
there are fewer people who can abuse your services. You
can also restrict authenticated users so that they have
access to only a limited portion of your APIs, such as to
give employees access to administrative functions that
normal users shouldn’t see.

To authenticate users, sign up for an authentication service
provider like Auth0 or Okta or install a service in-house.
Authentication services take care of the login process and
then give the client an access token, which they can use to
gain access to your services. Services like Okta and Auth0
also provide APIs that let you automate signing up new
users.

HAProxy sits in front of your APIs and acts as the
gatekeeper, making sure that every client presents a valid
access token. We described this workflow in the
Authentication chapter. A client sends their token when
making requests to your APIs and HAProxy validates it,
checking that it has not expired, that it comes from a

HAProxy as an API Gateway 83

trusted authentication provider, and that it’s addressed to
the expected recipient.

Because token validation happens at the API gateway, the
servers behind the gateway don’t need to concern
themselves with it. They only need to receive requests and
send back responses. The gateway ensures that only users
that are allowed to call your APIs are able to do so.

TLS encryption
API messages often carry confidential information that
should be protected from eavesdroppers. They also carry a
user’s secret access token if you’ve implemented
authentication as described in the previous section. The
way to protect this confidential information is to enable
TLS encryption.

TLS stands for Transport Layer Security and it’s the
cornerstone of all modern, secure APIs. It enables you to
encrypt messages so that they can’t be read in-transit,
while allowing only the receiver to decrypt them. Enabling
it in HAProxy is straightforward. You simply need to upload
your TLS certificate and private key to the server and then
update your HAProxy configuration to use them to encrypt
traffic. We explain the entire process in our blog post
HAProxy SSL Termination.

TLS gives you several benefits. First, and perhaps most
importantly, it prevents anyone from eavesdropping. Even
if an attacker is able to intercept the messages, they won’t
be able to decrypt them. TLS also maintains the integrity of

HAProxy as an API Gateway 84

https://www.haproxy.com/blog/haproxy-ssl-termination/
https://www.haproxy.com/blog/haproxy-ssl-termination/

the messages, since if an attacker tries to alter random
parts of the requests, the client will become aware. It also
gives the client a way to validate the server’s identity, since
only the true server will possess the TLS private key that
matches the API’s domain name.

By enabling TLS encryption in HAProxy, which acts as a
gateway in front of your API servers, you offload that
responsibility from your servers. This simplifies your
application code and tightens your security by allowing you
to store your TLS private key in fewer places.

Rate limiting
Rate limits put a cap on how many API calls a user can
make within a period of time. They prevent a single client
from overutilizing your application and network resources.
After all, even an honest user may write a poorly written
client application that makes too many requests. Yet,
malicious users intent on flooding your service with
requests are all too common. Without rate limits, one
misconfigured client or malicious user can quickly
overwhelm your services.

In our blog post HAProxy Rate Limiting: Four Examples, we
demonstrated how HAProxy supports several types of rate
limiting, each with its own set of knobs that you can use to
tune the rate limit period, threshold, or fields that are used
to identify a user: You can set the period to allow a certain
number of API calls per second, minute, hour, or day; You
can increase or decrease thresholds dynamically by using

HAProxy as an API Gateway 85

https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting/

Map files, and you can identify users by a variety of things
such as their IP address, URL parameter, or access token.

Rate limits set expectations for your customers about what
fair use means. They’ll know that they can’t hammer your
services incessantly, which allows them to plan ahead and
weed out any misbehaving client code. Malicious users will
be unable to abuse your APIs, for example by calling a
function repeatedly to extract your entire catalogue of
data.

Anomalous behavior
protection
Once you’ve given a customer access to your APIs, it’s
important that they use it only in the way that adheres to
the terms of your agreement. For example, they should
not try to discover or exploit vulnerabilities in your
application. They should not try to circumvent your access
controls, seek out restricted areas, or try dictionary-style
attacks against your API endpoints.

You can detect anomalous behavior by making use of
HAProxy’s stick tables and ACLs. Stick tables correlate a
client’s actions across multiple requests, allowing you to
verify that they’re authenticated, see how many successful
vs unsuccessful responses they’ve received, observe how
much data they’re uploading or downloading, check how
many new connections they’re creating, and recognize
when they’re scanning for vulnerabilities.

HAProxy as an API Gateway 86

https://www.haproxy.com/blog/introduction-to-haproxy-stick-tables/
https://www.haproxy.com/blog/introduction-to-haproxy-acls/

ACLs are complementary to stick tables. They’re the rules
that trigger an action once you detect one of the
aforementioned behaviors. For example, you might
respond by denying that user’s request. Or, you might ban
them for a time or simply log the event. We demonstrate
many of the options available to you in our blog post Use
HAProxy Response Policies to Stop Threats.

HAProxy Enterprise adds more safeguards. With the
HAProxy Enterprise version, you can detect bot-like
behavior and, through geolocation, check from where in
the world the calls are originating. It can also verify that
requests are coming from the types of devices you expect
through its device detection modules.

Web application firewall
Many of the types of attacks launched against
websites—including SQL injection and cross-site
scripting—are directed against web APIs too. One way to
protect yourself is to introduce a web application firewall
(WAF) to inspect all incoming and outgoing traffic and filter
out malicious messages.

HAProxy Enterprise ships with its HAProxy Enterprise WAF,
which you can run in one of three modes. The simplest of
the three modes, SQLi / XSS mode, guards against SQL
injection and cross-site scripting attacks alone. This mode
is quick to configure and requires very little maintenance,
but will give you protection against two of the most
common threats against web APIs.

HAProxy as an API Gateway 87

https://www.haproxy.com/blog/use-haproxy-response-policies-to-stop-threats/
https://www.haproxy.com/blog/use-haproxy-response-policies-to-stop-threats/

In ModSecurity mode, the WAF blocks a wider range of
attacks based on signatures defined in its ruleset files. You
get protection against many of the top attack vectors
including SQL injection, cross-site scripting, remote file
inclusion, and remote code execution. This mode requires
more tuning to get right, however it gives you leeway to
add rules from various third-party vendors.

When operating in a high-stakes environment consider
using the zero trust mode, wherein the WAF blocks all
types of requests that have not been explicitly allowed.
You might use this to protect APIs that connect critical
systems within your organization where you know who the
sender and receiver will be and exactly the type of
messages they’ll exchange.

Protecting your APIs with a WAF is a smart move since it’s
difficult to guarantee that the applications serving your
APIs will always be 100% secure by themselves. A WAF
stops attacks at the API gateway before they reach farther
into your network.

Bot management
Attackers use bots to launch large, coordinated assaults
against APIs. Bots automate the tedium of hacking. They
can repeatedly invoke an API function to fetch all of the
stored data; They can try endless combinations of values
for a function’s parameter list, seeking the key that unlocks
a vulnerability; They can attempt to inject code into as
many endpoints as possible.

HAProxy as an API Gateway 88

A bot does the boring work of hacking so that a human
doesn’t have to. APIs are easy targets for bots because
they are meant to be consumed by software anyway.
There’s no web UI to get around, no text boxes to find and
fill out, no buttons to click. An API is meant to be used by
machines.

The challenge with detecting malicious bots is that normal
consumers of your APIs will also be software programs.
Countermeasures like reCAPTCHAs and JavaScript
challenges won’t be suitable since they would block
legitimate software-based clients. However, all clients must
follow your usage policy and those that don’t deserve to be
dealt with in the same way.

HAProxy comes with mechanisms for detecting whether a
client is behaving badly. In our blog post Bot Protection
with HAProxy, we give examples of bots that make
thousands of requests to unique URLs in order to scan
your service for vulnerabilities. Other bots will call the
same URL many times, such as to try to brute force their
way past your authentication mechanisms.

You can discover bad behavior with anomalous behavior
detection, as we described earlier. The rate limits we
described earlier will also stop clients that make too many
requests within a period of time. In the end, when all
clients are expected to be machines, you have to fall back
to treating them all with the same rules. An API gateway is
the best place to enforce these rules.

With HAProxy Enterprise, you can aggregate the stick table
data from multiple API gateways. That makes it possible to

HAProxy as an API Gateway 89

https://www.haproxy.com/blog/bot-protection-with-haproxy/
https://www.haproxy.com/blog/bot-protection-with-haproxy/

identify behaviors even when a bot’s requests are routed
to multiple nodes in an active/active cluster. This gives you
the full picture of the volume and character of the
requests.

Conclusion
In this chapter, you learned several ways to protect your
APIs using an API gateway. By layering on authentication,
TLS encryption, rate limiting, anomalous behavior
protection, a WAF, and bot management you can stop
attackers before they reach your servers. Having this level
of security for your APIs is more important than ever as
more types of applications rely on APIs to connect to their
data. Having it all in one place means you can provide that
security across your entire catalogue of services.

HAProxy as an API Gateway 90

Visit us at https://www.haproxy.com

HAProxy as an API Gateway 91

https://www.haproxy.com/

	Table of Contents
	Introduction
	Essential Features of an

API Gateway
	HTTP routing
	Load balancing
	Server overload protection
	Rate limiting
	Detailed metrics and logs

	Health Checks
	Active health checks
	Passive health checks
	Agent health checks

	Metrics
	Important API metrics
	How HAProxy publishes metrics
	Visualizing the metrics

	Caching
	Why you should cache API responses
	How to cache with HAProxy

	Authentication
	Authentication and authorization
	OAuth 2 access tokens
	API gateway sample application
	Configure HAProxy for OAuth 2

	Monetization
	Set up the demo project
	Configure Keycloak
	Get an access token
	Configure access in HAProxy
	Make a request

	Security
	Authentication
	TLS encryption
	Rate limiting
	Anomalous behavior protection
	Web application firewall
	Bot management

